Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Though some LHC searches for new physics exceed the TeV scale, there may be discoveries waiting to be made at much lower masses. We outline a simple quirk model, motivated by models that address the hierarchy problem through neutral naturalness, in which new electroweakly charged states with masses as low as 100 GeV have not yet been probed by the LHC. We also describe a novel search strategy which is complementary to current search methods. In particular, we show its potential to discover natural quirks over regions of parameter space that present methods will leave unexplored, even after the LHC’s high-luminosity run. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available June 1, 2026
-
A<sc>bstract</sc> The kinetic mixing of two U(1) gauge theories can result in a massless photon that has perturbative couplings to both electric and magnetic charges. This framework can be used to perturbatively calculate in a quantum field theory with both kinds of charge. Here we reexamine the running of the magnetic charge, where the calculations of Schwinger and Coleman sharply disagree. We calculate the running of both electric and magnetic couplings and show that the disagreement between Schwinger and Coleman is due to an incomplete summation of topological terms in the perturbation series. We present a momentum space prescription for calculating the loop corrections in which the topological terms can be systematically separated for resummation. Somewhat in the spirit of modern amplitude methods we avoid using a vector potential and use the field strength itself, thereby trading gauge redundancy for the geometric redundancy of Stokes surfaces. The resulting running of the couplings demonstrates that Dirac charge quantization is independent of renormalization scale, as Coleman predicted. As a simple application we also bound the parameter space of magnetically charged states through the experimental measurement of the running of electromagnetic coupling.more » « less
-
Abstract Complex scalars inU(1)-symmetric potentials can form stable Q-balls, non-topological solitons that correspond to spherical bound-state solutions. If theU(1) charge of the Q-ball is large enough, it can support a tower of unstable radial excitations with increasing energy. Previous analyses of these radial excitations were confined to fixed parameters, leading to excited states with different chargesQ. In this work, we provide the first characterization of the radial excitations of solitons for fixed charge, providing the physical spectrum for such objects. We also show how to approximately describe these excited states analytically and predict their global properties such as radius, energy, and charge. This enables a complete characterization of the radial spectrum. We also comment on the decay channels of these excited states.more » « less
-
A bstract Non-topological solitons such as Q-balls and Q-shells have been studied for scalar fields invariant under global and gauged U(1) symmetries. We generalize this frame-work to include a Proca mass for the gauge boson, which can arise either from spontaneous symmetry breaking or via the Stückelberg mechanism. A heavy (light) gauge boson leads to solitons reminiscent of the global (gauged) case, but for intermediate values these Proca solitons exhibit completely novel features such as disconnected regions of viable parameter space and Q-shells with unbounded radius. We provide numerical solutions and excellent analytic approximations for both Proca Q-balls and Q-shells. These allow us to not only demonstrate the novel features numerically, but also understand and predict their origin analytically.more » « less
An official website of the United States government
